UH OH!
CoRev sends along the following information as the news hits the UK papers and today’s New York Times.
UH OH!
NASA, Jet Propulsion Laboratory announced that the Pacific Decadal Oscillation (PDO) has flipped to its cool phase.
The last time this happened was in 1946, and for the next three decades we had cooler than average temperatures.
Additional information can be found at Watts Up With That?
Rdan here: Here is a link to one NYT point of view on a ‘cooling period’ and climate change. A visit to NASA has interesting information.
This multi-year Pacific Decadal Oscillation ‘cool’ trend can intensify La Niña or diminish El Niño impacts around the Pacific basin,” said Bill Patzert, an oceanographer and climatologist at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “The persistence of this large-scale pattern tells us there is much more than an isolated La Niña occurring in the Pacific Ocean.”
Sea surface temperature satellite data from the National Oceanic and Atmospheric Administration also clearly show a cool Pacific Decadal Oscillation pattern, as seen at here.
The shift in the Pacific Decadal Oscillation, with its widespread Pacific Ocean temperature changes, will have significant implications for global climate. It can affect Pacific and Atlantic hurricane activity, droughts and flooding around the Pacific basin, marine ecosystems and global land temperature patterns.
“The comings and goings of El Niño, La Niña and the Pacific Decadal Oscillation are part of a longer, ongoing change in global climate,” said Josh Willis, a JPL oceanographer and climate scientist. Sea level rise and global warming due to increases in greenhouse gases can be strongly affected by large natural climate phenomenon such as the Pacific Decadal Oscillation and the El Nino-Southern Oscillation. “In fact,” said Willis, “these natural climate phenomena can sometimes hide global warming caused by human activities. Or they can have the opposite effect of accentuating it.”
Jason’s follow-on mission, the Ocean Surface Topography Mission/Jason-2, is scheduled for launch this June and will extend to two decades the continuous data record of sea surface heights begun by Topex/Poseidon in 1992. JPL manages the U.S. portion of the Jason mission for NASA’s Science Mission Directorate, Washington, D.C.
For more information on NASA’s ocean surface topography missions, see here or to view the latest Jason data, visit here.